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Abstract. The aim of this work is to present a damage identification method dedicated to beams. The
core of the approach is the Virtual Distortion Method, which is a fast reanalysis method successfully
applied to damage identification. Loss of stiffness and mass are modelled by virtual distortions and
modifications of the parameters are calculated as a result of a sensitivity-based minimisation. In this
paper we deal with a steady-state problem i.e. low frequency, non-resonance harmonic excitation in-
duces a static-like structural response with virtual distortions (design variables) modelling parameter
modifications.

Introduction

In this paper, the problem of structural damage identification in the frequency domain is investigated.
The principal incentive for developing the new frequency-based approach was the reduction of vast
consumption of computational time, observed in the previous time-domain approach [1]. A simplified
dynamic problem with no damping is considered. A number of selected non-resonance excitation fre-
quencies of low range (below 1 kHz) are the subject of analysis. Steady-state dynamic responses are
provoked and a static-like inverse dynamic problem is posed in the framework of the Virtual Distor-
tion Method [2], belonging to the class of model updating methods in Structural Health Monitoring.
As a consequence, the gradient-based optimization process in the frequency domain turned out to
be significantly faster compared to the one in the time domain, while the accuracy of identification
remained unchanged. The proposed approach has been implemented in a software code [3].

The beam model has been chosen for presentation of the approach. Stiffness and mass reduction are
considered as damage parameters. Experimental verification of the frequency-based approach is on
the way for a 70-element space truss structure. An in-field demonstration is planned.

VDM with Harmonic Excitation

The use of VDM in dynamic damage identification was previously discussed in [4, 5, 6]. The papers
dealt with modifications of stiffness parameters of truss and beams structures in the time domain,
in which dynamic analysis using the VDM may be numerically time consuming. In this paper an
alternative approach to damage identification in the frequency domain is discussed.



Virtual Distortions and Modification Parameters. The virtual distortion is an initial perturbation
introduced to a finite element (or node) of an original structure subjected to external load (harmonic
excitation in this paper). It may take the form of a strain ε0

α(t, ω) (applied as a pair of self-equilibrated
forces in elements) – modelling stiffness modifications or a single unequilibrated force p0

k(t, ω) (ap-
plied at nodes) – modelling inertia modification (t, ω denote time and frequency of excitation,
respectively). Greek indices refer to elements whereas Latin ones to nodes.

Relation between virtual distortions ε0
α(t, ω), p0

k(t, ω) and the parameter of modified stiffness µα =
k̂EA

α

kEA
α

called modification parameter is derived from the equivalence of internal forces and strains in
the structure modelled by virtual distortions and the modified structure. It is expressed by the formula
(see [4]):

µα εα(t, ω) = εα(t, ω)− ε0
α(t, ω), (1)

With Eq. (1), modifications of both the Young’s modulus E as well as cross-section area A of an
element α can be modelled. The updated strain εα(t, ω) depends on virtual distortions ε0

α(t, ω) and
p0

k(t, ω), thus Eq. (1) is non-linear.

Any deformation state for a 2D-Beam finite element specifies 3 components (orthogonal base) ob-
tained by solving the eigenvalue problem of its stiffness matrix. In this element, the virtual distortions
corresponding to the 3 components are imposed. The virtual distortions have an oscillating form (pre-
sented in Fig. 1 for amplitude values) due to harmonic excitation of frequency ω. For 2D-Beam finite

Figure 1: Basic virtual distortion states.

element, the relations analogous to Eq. (1) are expressed by the equations:

µ(1)
α ε(e)

α (t, ω) = ε(e)
α (t, ω)− ε(e) 0

α (t, ω),

µ(2)
α κ(e)

α (t, ω) = κ(e)
α (t, ω)− κ(e) 0

α (t, ω), µ(3)
α χ(e)

α (t, ω) = χ(e)
α (t, ω)− χ(e) 0

α (t, ω). (2)

The first equation of the set (2) concerns axial stiffness (similarly to Eq. (1)) and the remaining ones
describe bending states, where µ

(2)
α = µ

(3)
α = k̂EJ

α

kEJ
α

is the ratio of a modified bending stiffness to the

original one. Further, we assume the modifications of cross-section area (µ(1)
α = Âα

Aα
) and moment of

intertia (µ(2)
α = µ

(3)
α = Ĵα

Jα
) independently.

For a steady-state harmonic excitation, the virtual distortions can be written in the following form:

ε0
α(t, ω) = ε0

α(ω) sin(ω t), p0
k(t, ω) = p0

k(ω) sin(ω t), (3)

where ε0
α(ω) and p0

k(ω) are amplitudes of the generated virtual distortions. In the next equations, the
amplitudes are used assuming the following notation:

ε0
α(ω) = ε0

α, p0
k(ω) = p0

k, (4)

where ω indicates the dependency on excitation frequency.

Let us introduce now the notion of unit distortions. Unit strain distortion ε0
α(t, ω) is an initial, os-

cillating strain imposed in finite element that would cause strain with unit amplitude (for ω = 0 i.e.
static case) in that element when taken out of structure. Unit virtual distortion p0

k(t, ω) is an initial,
oscillating force applied at node.



Influence Matrices. The crucial point for VDM calculations is the influence matrix containing am-
plitudes obtained for unit distortions. For steady-state problems two influence matrices are generated:
influence matrix Bε

iβ(ω) storing displacements generated due to unit strain distortions ε0
β(ω) = 1 and

influence matrix Bp
ik(ω) storing displacements generated due to unit force distortions p0

k(ω) = 1.

Knowing the virtual distortions ε0
α and p0

k and influence matrices, the updated response in displace-
ments can be calculated (without re-computing the stiffness and mass matrices) as follows:

ui = uL
i + Bε

iβ ε0
β + Bp

ik p0
k, (5)

where uL
α denotes amplitudes of displacements of the original structure determined for the excitation

frequency ω. Thus the actual response ui depends on two virtual distortions ε0
α and p0

k. Multiplying
Eq. (5) by GαQTQi, the updated strain can be calculated as follows:

εα = εL
α + Dε

αβ ε0
β + Dp

αk p0
k, (6)

where:

εα = GαQTQi ui, Dε
αβ = GαQTQiB

ε
iβ, Dp

αk = GαQTQiB
p
ik, (7)

and GαQ – geometric matrix, TQi – matrix of transformation to the global coordinate system.

It is necessary to quickly calculate the quantities qA (e.g. displacement or strains), which correspond
to the measured responses qM

A . To this end, the generalized influence matrices D̆
ε

Aα and D̆
p

Ak are built
utilizing the initial matrices: Bε

iβ , Dε
αβ , Bp

ik, Dp
αk. Finally, the updated response of a selected quantity

(e.g strain) is determined in the following way:

qA = qL
A + D̆

ε

Aα ε0
α + D̆

p

Ak p0
k, (8)

where qL
A denotes amplitudes of the requested responses of the original structure.

Problem Formulation

Generally, the equations of motion for a finite element model are expressed by the formula:

Mü(t) + Cu̇(t) + Ku(t) = f(t), (9)

where M, C and K are mass, damping and stiffness matrices, respectively and f(t) is the vector of
external forces. Neglecting the influence of damping and expressing external load and displacement
for a steady-state problem as:

f(t) = f sin(ωt), u(t) = u sin(ωt), (10)

we can reshape Eq. (9) to read:

−ω2Mu + TSε = f , (11)

where T – the local-global transformation matrix, S – the matrix containing components of axial EA
and bending EJ stiffness for finite elements of the original structure. Now, we can write the equations
of motion for the structure modelled by virtual distortions ε0

α and p0
k (mass and stiffness matrices are

intact) and the modified structure (mass and stiffness matrices are changed):

−ω2Mu + TS(ε− ε0) = f + p0, (12)

−ω2M̂u + TŜε = f . (13)



Let us note that the following relation holds:

TS(ε− ε0) = TŜε, (14)

thanks to the static VDM postulate of internal forces and strains equivalence between the modelled
and modified structure. Subtracting Eq. (12) from Eq. (13) and taking into account Eq. (14), one
obtains:

ω2M̂u = ω2Mu + p0. (15)

Eq. (15) forms the dynamic postulate of inertia forces equivalence between the modified and modelled
structure. The difference M̂ij −Mij for beam structures can be expressed in the following way:

M̂ij −Mij = ∆Mij = (µA
γ − 1)

A

Mγ
ij + (µJ

γ − 1)
J

Mγ
ij, (16)

where µA
γ = Âγ

Aγ
, µJ

γ = Ĵγ

Jγ
are modification parameters for element γ. The mass matrix is decomposed

into the matrix
A

Mγ
ij – depending on the cross-section area Aγ and the matrix

J

Mγ
ij – depending on the

moment of intertia Jγ . Let us note that the following relation holds:

Mij =
∑

γ

A

Mγ
ij +

∑
γ

J

Mγ
ij. (17)

In order to determine the virtual distortions ε0
α, p0

k, let us substitute Eq. (6) to Eq. (1) and Eq. (5) to
Eq. (15), yielding:

[
δαβ − (1− µα) Dε

αβ − (1− µα) Dp
αk

−ω2∆MijB
ε
jβ δik − ω2∆MijB

p
jk

] [
ε0

β

p0
k

]
=

[
(1− µα) εL

α

ω2∆Miju
L
j

]
. (18)

The calculated virtual distortions ε0
α, p0

k (for an assumed vector of stiffness parameters µα) from the
set of equation (18) are used to compute the updated response qA corresponding to the measured one
qM
A . Subsequently, the vector of stiffness modification parameters µα is iteratively determined by

minimisation of the proposed objective function:

F (µα) =
∑

ω

∑
A

(
qA − qM

A

)2
, (19)

using the following steepest descent optimisation approach:

µ(i+1)
α = µ(i)

α − δF (i) ∇F (i)

∇F (i) [∇F (i)]
T
, (20)

where:

∇F (i) =
∂F (i)

∂µ
(i)
α

=




∂F (i)

∂ε
(i)0
β

∂ε
(i)0
β

∂µ
(i)
α

∂F (i)

∂p
(i)0
k

∂p
(i)0
k

∂µ
(i)
α


 = 2

∑
ω

∑
A

(
qA − qM

A

)

 D̆Aβ

∂ε
(i)0
β

∂µ
(i)
α

D̆Ak
∂p

(i)0
k

∂µ
(i)
α


 , (21)

is the gradient of the objective function in i − th iteration. For reaching the optimum solution of the
function (19), the gradients

∂ε0
β

∂µα
and ∂p0

k

∂µα
have to be calculated. To this end, let us differentiate Eq.

(18) with respect to modification parameters µα:
[

δαβ − (1− µα) Dε
αβ − (1− µα) Dp

αk

−ω2∆MijB
ε
jβ δik − ω2∆MijB

p
jk

] [
∂ε0

β

∂µα
∂p0

k

∂µα

]
=

[ −εα

ω2 ∂∆Mij

∂µα
uj

]
. (22)

Let us notice that the left-hand side matrix in Eq. (22) is the same as in Eq. (18), whereas the
right-hand side depends now on updated displacements and strains.



Numerical Example

As an illustration of the discussed damage identification method, let us consider a simple cantilever
beam divided into 25 finite elements, shown in Fig. 2. The original parameters are identical in all
finite elements:

• cross-section area A = 1 · 10−4 m2,

• moment of intertia J = 1.0417 · 10−12 m4.
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Figure 2: Tested 2D beam structure.
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Figure 3: Identified cross-section areas after 500 iterations.
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Figure 4: Identified moments of inertia after 500 iterations.

The harmonic excitation – bending moment M = M0 sin (ωt) and axial force P = P 0 sin (ωt) – is
applied to the free end of the cantilever beam. The amplitudes are: M0 = 1 [Nm], P 0 = 100 [kN ]
and the arbitrary frequencies: ω = {50, 100, 220} [Hz] (out of resonance). The measured data were
numerically simulated for each frequency ω (all components of strain responses εM

α ). The results of
inverse analysis are presented in Fig. 3 for the cross-section modification µA

α , and in Fig. 4 – for the
moment of inertia modification µJ

α.



Conclusions

Numerical effectiveness of the presented VDM-based approach in the frequency domain was demon-
strated in the preceding section. Compared to the previous time domain approach, the computational
effort has been reduced by 2 orders of magnitude. The experimental stand of a simply supported 3D
steel truss structure (70 elements) is presented in Fig. 5b. The response of the structure is measured by
thin piezo-patch sensors glued on elements (see Fig. 5a). There has to be lots of sensors in the truss,
which is a consequence of using the frequency-domain, static-like approach. The experiment is now at
the stage of matching model parameters to experimental responses. Various damage scenarios due to
replacing the initial truss elements with other ones of different stiffness and mass will be investigated.
An in-field demonstration for a steel railway bridge is envisaged in future research.

Figure 5: Experimental stand – 3D truss structure. (a) piezo-sensor, (b) general view.
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